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CHAPTER 12 * FUNCTIONS OF SEVERAL VARIABLES
818

i i differentiability and continu-
i iable function Discuss the
6 A nondifferentiab
3xy EXAMPLE

I two variables Find the
JAE) Lol ity of the function

of the Jollowing Junctions,
rd

Jirst partial derivatives

3 f(y,2) = xp + 47 + ¥z
Lyz if (x: y) # (0’ O) 32, g(x, »z) = 2)4:2_)) — 3xz* + 10};232
314 .
f(x,y)= g T if (x y)=(0,0) 33. h(x,y,z)=cos(x+y+z)

i i 11 points
i i i nd differentiable at a ‘ o
i function, f is continuous a iff : i
SOLUTION Asa ré‘“?r?tii’esting behavior occurs at the origin. Usﬂﬁ Ciar}?sl approached 3. Flu, v, 1) = "
L (OéO)' le 4 in Section 12.3, it can be shown that if the orig A
to those in Examp
along the line y = mux, then

36. G(r,s,t) = \frs ¥ rt+ st

3. flw, x,y,z) = wihy? + xyip2

34. O(x,y,2) = tan xyz

X
is not continuous

J;t (0, 0), even though

£0,0) = £0,0) = 0.

3xy . 3m
]im 2 74 - m2 + 1.
FIGURE 12.52 (x3)—=(0,0) x* + ¥y

]
f ( 2 )' nti 9, h('u) 'y Z)

3B. gw, x,y,2) = cos (w + x) sin (r ~2)

41, Gas law calculations Consider the Ideal Gas Law PV = kT,
- f(0,0 . 0-0 - where k > 0 g a constant. Solve thig equation for V jp terms of
i 4 B~ Y PandT
. and 7.
0,0) = lim h =
140, 0) h—0 0,0) 0—0 a. Determine the rate of change of the volume with respect
f(0,0 + ) — f(0, = lim T = 0. to the pressure at consta
= | 0
/4(0,0) = lim h i

nt temperature, Interpret the
result.

b. Determine the rate of change of the volume with respect
to the temperature »¢ constant pressure., Interpret the
result,

. — istal
i rtial derivatives exist a
i i iable at (0, 0), its first pa o oxidl g
i at [ is not d1fferentu'1 ), it e

Despite th_e fa(ifett:)f f.i):st partial derivatives at a point is no‘t e??uif fiost purtal a8

(©, 0) e oint. As expressed in Theorem 12.5, continu yd P

el ﬂ}:;é) for éifferentiability. It can be shown that f, and f

tives is requi

8 ¢ Assuming k = 1, dra
Related Exercises 4346 ( g
at (0, 0).

function and interpre

W several level curves of the volume
t the results as in Example 5.
b 42. Volume of a box A po witha s

quare base of length x and height
hhas a volume v = 2,

SECTION 12.4 EXERCISES
i stions - —
ReV'SeW ?3;1: you are standing on the surface z = f(x, )21) ;t(a eb[; 5
- (uptl’3 f(a, b)). Interpret the meaning of f (a, b) and f(a,
ai H E] 1
terms of slopes or rates of change.

2 3
2. Find f,and f, when f(x,y) = 3x"y + xy".
3. Find f, and f, when f(x,y) = x cos (xy).

w

a. Compute the partial deriva
w + 2

For a box withh = 1.5 m,

12. g(x,2) = xIn(Z* + &)

-VZ+
13. s(y,z) = z*tan yz . Flpg) = Vi 8

uv
Vst 16. h(u,v) = \[=——
s+t

tives V_ and Vi
1L f(w,z) =

15. G(s,t) =

i rtial
17-24. Second partial derivatives Find the four second pa
deriva}ives of the following functions.

2 4y
18, fix) = 22"

10% change in x always produce
ange in V? Explain,
oes a 10% change in /, always

a 10% change in 19 Explain,
/ Nondit‘ferentiability? G

onsider the Jollowing Junctions o

(aPPrOXimately) a10% ch
3
ivati = 3xly + xy*.

4.  Find the four second partial derivatives of f(x, y) = 3x°y

& For g fixeq base length, d
Produce (approximately)

=x 241
i i i . h(x,y) = 3P+ xy
1d evaluate f, for the differentiable function 17, h(x,y)
5. Explain how you wou A ;
w = f(I, y» z)‘

3 c VOlulne f ]lg t cir y 1 (lel Wl“l ]adlus ¥ aIld helght n
6 Ih ora h C1 Cular C n
18 “ = qr! h. IS the UOIUIIle an increasing or dECIeaSmg futlctl()ﬂ

X 0. f(x,y) = cosxy
. f(x,y) = y*sin 4x s

21. p(u,v) =In(@® +® +4) 22. Q(r,5) =r/s

a Is f continuous at (0), 0)?

[

i US'E difforansi 9
F(r,s)=ré 2. H(x,y) = V4+x g;?fﬁf’l’iﬁ?ﬁﬁ}f(o% and (0, 0),

of the radius at a fixed height (assume r > 0 and & > 0)? 22;30 l;quality of mixed partial derivatives Verify that [y :j: ?;”:; ;;i?:; ﬁ\sa]';d 5f ; :{Z ;?;Z;i:cc)g; ;z; gi’,o,,.),}- i
Bagic Skiils (al derivatives of the Jor the following functions. = - Tesults in payy (a)~(d).
ol e e e e 25, feep] =t gk L a6 f(x’y) = 3%yt 0 e il 0,0)
following functwn;?- B S =B 22y g 28. f(xy A W)= ¢ a2y
y el = 1;] h(x,y) = (P +1)e 29. f(x,y) =" 30. £y ¥
9. g(x,y) = cos 2xy o

A 1 0 if ().’,y) = (0’ 0)

12.4 Partial Derivatives

2xy?

U fry)={ 21 %)= (00
0

if (x,y) = (0,0)
45. flx,y)=1- xy]

46. f(x,y) = V]

Further Explorations

47. Explain why or why
Statements are true

82
b, — = —
dxdy (W;) xy
¢ If f has continuous partial derivatives of all orders, then
f xxy = f yaxs

48-52, Miscellaneous parti

ial derivatives Compute the Jirst partial
derivatives of the Jollowing Junctions,
48. f(x,y) =In (1 + ™)

49. f(x,y) = 1 — tan! (x2+y2)

50. f(x,y)=1~cos(2(x+y))+cosz(x+y)
dx — 2y — 2,
Sl hxy,2) = (L + x + 295 55 L e 2 TR -2
(63,2) = (1 + x VS 52, g(x,y,z) GG

a. Compute z, and Ly
b. Sketch the level curves for 2=1,2,3 and 4.
¢ Move along the horizona] line y = 1 in the Xy-plane and

describe how the corresponding z-valueg change. Explain

how this observation is consistent with z, a5 computed in
part (a).

d. Move along the vertical Jine ¥ = Lin the xy-plane and
describe how the ¢

rresponding z-valyes change. Explain
how this observation is consistent with Zy as computed in
part (a).

Spherical caps The volume of (he cap of a sphere of radiys - and

thickness / is = ghz(Sr B DS b

V=3rG3r - p)

a. Compute the

partial derivativeg Vyand v,
b. For a sphere

s the rate of change of volume with
= 0.2r or when 4 = (.82

» for what value of , is the rate of
change of volume with respect (o 7 equal to 1?

d. For a fixed radius 7, for what value of /1 (0 = ) < r) is the
rate of change of volume with respect to / the greatest?




|
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55. Law of Cosines All triangles satisfy

the Law of Cosines,
= a?+ b> — 2abcos ¢ b
(see figure). Notice that when 59.
g = ar/2, the Law of Cosines ‘
becomes the Pythagorean Theorem. a

Consider all triangles with a fixed
angle § = /3, in which case, ¢ is a function of a and b, where

a>0andb > 0.
a_c

d
7 and gz— by solving for ¢ and differentiating.

a. Compute

0 d
b. Compute a—z and a—; by implicit differentiation. Check for

agreement with part (a).
¢. What relationship between @ and b makes ¢ an increasing
function of a (for constant b)?

Applications

56. Body mass index The body mass index (BMI) for an adult human
is given by the function B = w/h*, where w is the weight meas-
ured in kilograms and £ is the height measured in meters. (The
BMI for units of pounds and inches is B = 703w/ W)

a. Tind the rate of change of the BMI with respect to weight at a

constant height.
b. For fixed A, is the BMI an increasing or decreasing function

of w? Explain.
¢. Find the rate of change of the BMI with respect to height at a

constant weight.
d. For fixed w, is the BMI an increasing or decreasing function

of h? Explain.

57. Electric potential function The electric potential in the xy-plane
associated with two positive charges, one at (0, 1) with twice the
magnitude as the charge at (0, —1), is

#(x, ) V2t - 1P TVET G

a. Compute ¢, and @,.

b. Describe how ¢, and ¢, behave as x, y — +00,

¢. Evaluate ¢,(0, y) for all y # 1. Interpret this result.
d. Evaluate ¢ (x, 0) for all x. Interpret this result.

{7 58. Cobb-Douglas production function The output Q of an economic
system subject to two inputs, such as labor L and capital K, is
often modeled by the Cobb-Douglas production function

O(L, K) = cLK". Suppose a = b= Zande = L.

a. Evaluate the partial derivatives Q; and Q.

b. If L = 10 s fixed and K increases from K = 20 to K = 20.5,
use linear approximation to estimate the change in Q.

¢. If K = 20 is fixed and L decreases from L = 10 to L
use linear approximation to estimate the change inQ.

d. Graph the level curves of the production function in the first
quadrant of the LK -plane forQ =1,2,3.

e. If you move along the vertical line I = 2 in the positive
K -direction, how does Q change? Is this consistent with Qg
computed in part (a)?

9.5,

Il

60.

f. If you move along the horizontal line K = 2 in the positive
I-direction, how does Q change? Is this consistent with @,
computed in part (a)?

Resistors in parallel Two resistors in an electrical circuit with

resistance R, and R, wired in parallel with a constant voltage give

; ; 1 1 1
an effective resistance of R, wher R - E; + ;{2
R,
R

. dR dR ; . 5,
a. Find — and — by solving for R and differentiating.
aR, R,

R IR T
b. Find IR, R, and IR R, by differentiating implicitly.
¢. Describe how an increase in Ry with R, constant affects R.

d. Describe how a decrease in R, with R, constant affects R.

Wave on a string Imagine a string that is fixed at both ends
(for example, a guitar string). When plucked, the string

forms a standing wave. The displacement of the string

varies with position x and with time 7. Suppose it is given by

u = f(x, 1) = 2sin (mx) sin (m/2) for 0 = x = landz =0
(see figure). At a fixed point in time, the string forms a wave on
[0, 1]. Alternatively, if you focus on a point on the string (fix a
value of x), that point oscillates up and down in time.

a. What is the period of the motion in time?
b. Find the rate of change of the displacement with respect to

time at a constant position (which is the vertical velocity ofa

point on the string).

¢. Ata fixed time, what point on the string is moving fastest?

At a fixed position on the string, when is the string moving

fastest?

e. Find the rate of change of the displacement with respect
to position at a constant time (which is the slope of the
string).

£ At a fixed time, where is the slope of the string greatest?

¢

Z

ulx;, 1)) s b

: u(x 2 1 2)

61-63. Wave i ]
% eq!latlon Traveling waves (for exampi,
or etectromagnetic waves) exhibit o e

e periodic motion in both time and
i sion (for example, a wave on a string)
governed by the one-dimensional wave equationg e

2
Tu_ 23%
ar? ax®’

nlzhere u(x, 1) is the height or displacement
tion x .and lime t, and ¢ is the constant
following functions are solutions of the

61. u(x,1) = cos (2(x + ct))

of the wave surface ar posi-
speed of the wave. Show that the
wave equation,

62. u(x,1) = S5cos (2(x + ct)) + 3sin (x — ct)

63. =
ulx, 1) = A f(x + ct) + Bg(x — cf), where A and B are

C s f
g
onstants a[td al]d are twice dlﬁelelltlable functlons Of

64-67. Laplace’s equation A classical
Laplace’s equation, which arises in bogh
governs ideal fluid flow, electrostatic
distribution of heat in a conductin

Laplace’s equation is ¢

equation of mathematics is
theory and applications. Jt
po{entials, and the steady-state
medium. In two dimensions,

Pu , i
ax? 6)1_2= -

Show that the followin i
g Juncti [ ]
L ——— Junctions are harmonic; that is, they satisfy
64. u(x,y) = ¢ *gin ¥
65 u(x,y) = x(x* - 3y?)

66. u(x,y) =

s

(ax
e cos ay for any real number ¢

67, u(x,y) = tan™! (x i 1) - tan"‘( d )
i Xok 1

08-71. Heat equation The
: ?.guverned by the one
: Plates in two dimen,

s ;

b ﬂ w of heat along a thin conducting bar is
- stonal heat equation (with analogs for thi
ons and for solids in three dimensions) "

du 3

W that the follow;,

3 H(x,] = g
1 ) = 10¢™" sin x 69. u(x,1) = 4¢™ cos 2
Ux, 1) = ¢ (2sinx + 3 cos x)

(X, 1) = goa
e
_ cos ax, for any real numbers ¢ and A

the following situation,

w_ QUICK CHECK ANSWERS |
1.

ﬂ?e fem, erature ara !0((2”0”, xXon l}Ie baf 1 1
f P a et
ng fifn(uo”s .S‘aﬂsf y 1}?6 héai equatlml ]‘V[ﬂl k S l

3

1 2.5 The Chain Rule

In this section, w ; . e —
» We combine ideas based -

; 0 i ;
know about partial derivatives (Secti n the Chain Rule (Section 3.6) with what we

ables. To illustrate the importance of these method

12.5 The Chain Rule 821

:;\dditiona! Exercises
2-73. Differentiabili
ty Use the definiti ] 1
that the following functions are di jﬁm”‘m G g

¢ ) rentiable at
uce functions e, and e, with the required properg?;so ¥ TRy o
2. fx,y)=x+y

73. flx,y) = x
' b y
74. Mixed partial derivatives

a. Consider the functi
: lonw = f(x, i i
partial derivatives that couldjge cﬁ’ o eond

5 0 el mputed.
. fgjx, ¥, 'z) = %y + 2xz* — 3y*z and determine whj
i ond partial derivatives are equal i
. How many second partial derivative
i partial derivatives does p = g(w, x,y, z)
75. Derivati i
ives of an integral Let  be continuous for all real numbers

a. Find f, and f, when flx,y) = /yh(s) ds.

X

Xy

b. Fi
Find f, and Sy when f(x,y) = [ h(s) ds.

76. An identity Show that if f(x, y) = X" 2
s o dyf where a, b, ¢, and d

0, then _fx = f, =0, forall x
o e explanation.
compley;-v E:e.mbann equatigns In the advanced subject of
bt ur(li les, .f functlon typically has the form
o s ,\;)__I . i 'u(xZ ¥), \fvhere u and v are real-valued func-
gl o is the imaginary unit. A function f =y + iy
CaUChy_Riemanny ic (ar'lalogous to differentiable) if it satisfies th
equations: u, = v and y, = —y e
a. Show that f(x, y) = (x* — J g N
b. Show that f(x, y) = x(x -
¢. Show that if f
Upe + vy, = 0.

are real numbers with ad — pe =
and y in the domain of /. Give an

2 . .
) 2+ i(2xy) is analytic.
3y%) + iy(3x% — y?) is analytic,

= u + ivis analytic, then Upe + uy, = 0and

Jj:; ==2)é;yf y = 2;r 2. (a) and (c) are the same; f
x > x.ry_6x 4'fxz=y_2x;fzz=2tg:

The equations of the level curves are 7 = lP V. As th
oV . AS the

on 12,
4) to develop new methods for finding derivatives
s, consider




